

Managing Select Complications in Oncology

Sonia Cheung, ACPR, RPh Trillium Health Partners, Mississauga Hospital CSHP Ontario Branch Annual Conference, Toronto Hospital Stream November 16, 2019

Presenter Disclosure

- Presenter's Name: Sonia Cheung
- I have no real or potential conflict to disclose.
- Speaking Fees for current program:
 - I have received no speaker's fee for this learning activity

 The goal of this session is to provide a concise review of select complications in oncology and provide the audience with clinical pearls that they can take back to their hospital practice.

By the end of this session, you should be able to:

- Discuss the initial management of these commonly encountered complications in oncology:
 - Hypercalcemia of malignancy
 - Tumor lysis syndrome
 - Cancer-associated thrombosis

Hypercalcemia of malignancy – Who?

- Incidence
 - Experienced by 20-30% of all cancer patients
 - Cancer patients with hypercalcemia > ¹/₃ of cases of hypercalcemia that present to ER
 - Cancer types: breast, lung, bone, multiple myeloma, lymphoma, kidney

Thomas 2016

Mechanisms of hypercalcemia – How?

Figure 1. | Mechanism of malignancy-associated hypercalcemia. PTHrP, parathyroid hormone-related hormone.

Rosner 2012

Credit Valley Hospital 2200 Eglinton Avenue West, Mississauga Mississauga Hospital 100 Queensway West, Mississauga

Systemic secretion of PTHrP

http://jasn.asnjournals.org/content/19/4/672/F1.expansion

Credit Valley Hospital 2200 Eglinton Avenue West, Mississauga Mississauga Hospital 100 Queensway West, Mississauga

Hypercalcemia - Diagnosis

- Total serum calcium level (and current serum albumin)
- Serum ionized calcium level
- Rule out other causes of elevated calcium unrelated to cancer (primary hyperparathyroidism, use of thiazide diuretics, granulomatous disease)
- Serum phosphorus
- Parathyroid hormone (PTH)
- Parathyroid hormone-related peptide (PTHrP)
- 1,25-dihydroxy vitamin D (1,25[OH]₂D)
- 25(OH)D
- Bone scan (or skeletal survey in multiple myeloma)

Goldner 2016

Hypercalcemia - Clinical presentation

Table 1	. Svm	ptoms of	moderate t	o severe	hyperca	Icemia :	associated	with	cancer	and	anticancer	treatments
10010	· • • • • •	pronino or	modorato t	0 001010	ing poilod	roonna .	abboonatoa		00011001	Contract 1	ciritiocirioor	a outino nuo.

	Early Manifestations	Later Manifestations
Neurological	 weakness/fatigue 	drowsiness/confusion
	 memory/concentration difficulty 	 delirium → coma
Cardiovascular	 shortened QT_c interval 	 ST segment elevation
	 enhancement of digitalis effects 	hypotension
		 bradyarrhythmias → heart block → cardiac arrest
Gastrointestinal	anorexia	nausea
	 constipation 	vomiting
Genitourinary	 polyuria and nocturia 	 dehydration → oliguria

Very poor prognosis! 50% of patients die within 30 days Median duration of survival 2-6 months from onset of hypercalcemia

> Alberta Health Services 2014 Goldner 2016 Rosner 2012

Credit Valley Hospital 2200 Eglinton Avenue West, Mississauga Mississauga Hospital 100 Queensway West, Mississauga

Hypercalcemia – Principles of Management

FIG 1. A treatment approach for hypercalcemia of malignancy. *Treatment mechanism. IV, intravenous; PTH, parathyroid hormone; SC, subcutaneous.

Goldner 2016

Credit Valley Hospital 2200 Eglinton Avenue West, Mississauga Mississauga Hospital 100 Queensway West, Mississauga

Hypercalcemia - Management

- Depends on severity and rate of ascent of the serum calcium level
- General classification:
 - Mild 2.6-2.9 mmol/L
 - Moderate 3.0-3.4 mmol/L
 - Severe 3.5 mmol/L or greater
- Rapid increase in serum calcium: marked neurologic dysfunction
- Chronic slow increase: minimal neurologic symptoms
- Anti-hypercalcemia therapy alone does not have any effect on mortality

Hypercalcemia - Management

- General supportive measures
 - Removal of calcium from parenteral feeding solutions
 - Discontinuation of all calcium and vitamin D supplements
 - Discontinuation of sedative medications \rightarrow enhance mental clarity
 - − Hypophosphatemia common, replace phosphorus PO or NG if possible
 → target 0.98-1.0 mmol/L

Thomas 2016

Hypercalcemia – Management

- Saline hydration and calciuresis: 200-500 ml/hr, adjust to urine output 100-150 ml/hr
 - Consider baseline dehydration and renal function, cardiovascular status, degree of neurologic impairment, severity of hypercalcemia
- Intravenous Bisphosphonates $\rightarrow 1^{st}$ line, mainstay for long-term
 - Pamidronate (2-4 hrs, \$10), Zoledronic acid (15 mins, \$25)
 - Block osteoclastic bone resorption
 - Initiate as soon as hypercalcemia is diagnosed, response takes 2-4 days
 - 60-90% of patients have normalized serum calcium within a week
 - Duration of response: 1-3 weeks
 - Potential side effects: hypophosphatemia, hypomagnesemia, hypocalcemia, influenza-like symptoms, nephrotoxicity, osteonecrosis of the jaw

Ralston 1990 Goldner 2016

Hypercalcemia – Pamidronate vs. Zoledronic acid

Major P, Lortholary A, et al. J Clin Oncol 2001; 19:558-67.

- Patients with corrected serum calcium 3.00 mmol/L or greater were treated with single dose of zoledronic acid 4 mg, 8 mg, or pamidronate 90 mg
- Rate of complete response by day 10, response duration, and time to relapse were measured.
- 287 patients randomized and evaluated for safety, 275 evaluated for efficacy

Rates of Complete Response (Ca \leq 2.70 by day 10)

Credit Valley Hospital 2200 Eglinton Avenue West, Mississauga Mississauga Hospital 100 Queensway West, Mississauga

Hypercalcemia - Management

- Glucocorticoids
 - Inhibit osteoclastic bone resorption by decreasing tumor productive of locally active cytokines
 - May have a role in lymphoma where there may be excessive vitamin D or endogenous overproduction of calcitriol
 - Prednisone 60 mg daily x 10 days or IV Hydrocortisone 200 mg x 3 days
 - Not commonly used
- Calcitonin
 - Increases renal excretion of calcium, inhibits decreasing bone resorption by interfering with osteoclast function
 - Negligible toxicity
 - Rapid onset of action
 - Short duration of action, tachyphylaxis in ~48 hrs due to downregulation of calcitonin receptors

Thomas 2016

Hypercalcemia - Management

Denosumab

- Human monoclonal antibody to RANKL
- Reduces osteoclast activity and bone resorption
- Use in hypercalcemia of malignancy is reserved for cases refractory to zoledronic acid or in patients with severe renal impairment
- Ideal dose in renal impairment is unknown → one case series in patients with multiple myeloma and renal impairment resulted in one patient having persistent hypocalcemia after denosumab treatment, requiring IV calcium supplementation
- Start with conservative dosing at 0.3 mg/kg
- Cinacalcet
 - Calcimimetic that activates the calcium-sensing receptor
 - Only 2 case reports on successful use of cinacalcet in this population (pts were refractory to all other treatment options)
- Dialysis
 - last resort

Tumor Lysis Syndrome

Tumor lysis syndrome – What and Who?

- Results in massive cellular breakdown in rapidly proliferating, bulky or highly chemo-sensitive tumors, and release of intracellular contents into the bloodstream resulting in metabolic abnormalities
- 3 categories of factors to consider in assessing risk

Tumor-related	Patient-related	Treatment-related
Burkitt's lymphoma Non-Hodgkin's lymphoma	Elevated uric acid	Cytarabine, etoposide, cisplatin
Acute myeloid leukemia Acute lymphocytic leukemia	Renal dysfunction	Corticosteroids
Chemosensitive tumors (eg. Small cell lung) High tumor burden	Tumor infiltration into kidney	Radiation
Highly proliferative tumors	Advanced age	Monoclonal Ab
Elevated LDH	Obstructive uropathy	

Coiffier 2008

Credit Valley Hospital 2200 Eglinton Avenue West, Mississauga Mississauga Hospital 100 Queensway West, Mississauga

TLS – Definition

Table 1. Cairo-Bishop Definition of Laboratory Tumor Lysis Syndrome							
Element	Value	Change From Baseline					
Uric acid	\geq 476 μ mol/L or 8 mg/dL	25% increase					
Potassium	\geq 6.0 mmol/L or 6 mg/L	25% increase					
Phosphorus	≥ 2.1 mmol/L for children or ≥ 1.45 mmol/L for adults	25% increase					
Calcium	$\leq 1.75 \text{ mmol/L}$	25%decrease					
NOTE. Two or more laboratory changes within 3 days before or 7 days after							

cytotoxic therapy.

Clinical TLS is present when laboratory TLS is accompanied by one or more of cardiac arrhythmia, death, seizure, or AKI with elevated Scr > 1.5 times the ULN

Coiffier 2008 Edeani 2016

TLS - Pathophysiology

Figure 1. The pathophysiology of tumor lysis syndrome.¹

Ab=antibody; α-IFN=interferon α.

Credit Valley Hospital 2200 Eglinton Avenue West, Mississauga Mississauga Hospital 100 Queensway West, Mississauga Queensway Health Centre 150 Sherway Drive, Toronto Cheson 2009

TLS – Clinical Manifestations

- Central nervous system
 - Seizures, syncope, lethargy, mental status changes
- Cardiovascular
 - Edema, fluid overload, congestive heart failure, arrhythmias, sudden death, hypotension, cardiac arrest
- Gastrointestinal
 - Nausea, vomiting, diarrhea, anorexia
- Neuromuscular
 - Muscle cramps, tetany, paresthesias
- Renal
 - Hematuria, oliguria, anuria, acute renal failure

TLS - Hyperuricemia

Coiffier 2008

Credit Valley Hospital 2200 Eglinton Avenue West, Mississauga Mississauga Hospital 100 Queensway West, Mississauga

TLS – Hyperuricemia

Allopurinol

- Blocks xanthine oxidase, which converts hypoxanthine to xanthine, and xanthine to uric acid
- Usual dose: 300 mg po daily, dosage adjustment required for renal insufficiency
- Allopurinol prevents formation of new uric acid, it does not reverse uric acid that has already been made, this may result in delay of effect.
- Cost per day: \$0.21

Rasburicase

- Recombinant urate oxidase, an enzyme which oxidizes uric acid to allantoin which can be easily excreted in urine
- Demonstrates a complete elimination of uric acid, thus no delay in effect
- Usual dose: 0.15 0.2 mg/kg IV daily for up to 7 days (numerous protocols exist)
- THP standardized dose: 4.5 mg ~ \$410

TLS - Prevention

- PREVENTION IS KEY
- Hydration and diuretics
 - Initiate hydration 12-24 hrs pre-treatment, continue 48-72 hrs post-
 - Target urine output 80-100 mL/m²/hr
- Allopurinol or Rasburicase
- Sodium bicarbonate no longer recommended
- Supportive treatment

TLS - Treatment

- Supportive measures:
 - Removal of potassium and phosphate sources (IV fluids/feeds/medications)
 - Sodium polystyrene sulfonate
 - Potassium ≥ 6.0 mmol/L and symptomatic
 - Insulin-Glucose therapy, Calcium gluconate, Inhaled beta-agonist, Diuretics
 - Potassium ≥ 7.0 mmol/L and symptomatic
 - Phosphate binders via PO or NG route
 - Calcium gluconate IV
 - Severe symptomatic hypocalcemia
 - Dialysis
 - Severe acute renal failure

https://www.mdanderson.org/content/dam/mdanderson/documents/forphysicians/algorithms/clinical-management/clin-management-tumor-lysis-web-algorithm.pdf

Credit Valley Hospital 2200 Eglinton Avenue West, Mississauga Mississauga Hospital 100 Queensway West, Mississauga

Cancer-Associated Thrombosis (CAT)

https://www.webmd.com/dvt/ss/slideshow-thrombosis-types

Thrombosis and Cancer go hand-in-hand

Cancer patients have a 4- to 7-fold increased risk of VTE Cancer patients have a 2-fold increased risk of major hemorrhage on anticoagulation

VTE is the 2nd leading cause of death in cancer patients, behind cancer itself

Cancer is associated with 20-30% of VTE in population studies

Wang 2018

Credit Valley Hospital 2200 Eglinton Avenue West, Mississauga Mississauga Hospital 100 Queensway West, Mississauga

Cancer-Associated Thrombosis: Who?

Cancer Related	Treatment Related	Patient Related	Biomarkers
Primary site	Chemotherapy	Older age	Platelet count (\geq 350,000/ μ L)
Stage (higher for advanced stage)	Antiangiogenic agents (eg, thalidomide, lenalidomide)	Race (higher in African Americans; lower in Asians/Pacific Islanders)	Leukocyte count (> 11,000/ μ L)
Cancer histology (higher for adenocarcinoma than squamous cell)	Hormonal therapy	Medical comorbidities (infection, renal disease, pulmonary disease, arterial thromboembolism)	Hemoglobin (< 10 g/dL)
Time after initial diagnosis (highest in first 3 to 6 months)	Erythropoiesis-stimulating agents Transfusions Indwelling venous access devices Radiation therapy Surgery > 60 min	Obesity History of VTE Diminished performance status Inherited prothrombotic mutations	

Lyman 2013

Credit Valley Hospital 2200 Eglinton Avenue West, Mississauga Mississauga Hospital 100 Queensway West, Mississauga

Risk of VTE and Time after Diagnosis of Cancer

Time in months

Blom 2005

Credit Valley Hospital 2200 Eglinton Avenue West, Mississauga Mississauga Hospital 100 Queensway West, Mississauga

Thrombosis: How?

Virchow's Triad

Stasis

RISK FACTORS ARE CUMULATIVE!!

THROMBOSIS

Vessel wall injury Hypercoagulability

Kyrle 2009

Trillium Health Partners Better Together

Credit Valley Hospital 2200 Eglinton Avenue West, Mississauga Mississauga Hospital 100 Queensway West, Mississauga

Thrombosis - Diagnosis

- Venous ultrasonography
- Computed tomography pulmonary angiography (CTPA)
- Ventilation / Perfusion (V/Q) lung scan
- Venography
- D-dimer
- Magnetic resonance imaging (MRI)

Is it a clot or???

Common causes of swollen legs in a palliative patient

Unilateral

- deep vein thrombosis
- cellulitis
- nodal disease in groin
- lymphedema

Bilateral

- deep vein thrombosis
- hypoalbuminemia
- heart failure
- medications (steroids, nifedipine)
- lymphoedema
- pelvic disease causing reduced venous outflow

Common causes of dyspnea in advanced cancer

- Pneumonia
- Pulmonary edema
- Pleural effusion
- anemia
- lung metastases
- lymphangitis
- muscle fatigue
- concurrent pulmonary illness
 - COPD
 - emphysema
 - interstitial lung disease

Noble 2007

CAT – Treatment (LMWH vs VKA)

• CLOT NEJM 2003:

- dalteparin provides significant reduction in VTE recurrence compared to warfarin (9% vs 17%)
- no difference in major bleeding
- CATCH JAMA 2015:
 - a nonsignificant reduction in VTE recurrence between tinzaparin and warfarin (6.9% vs 10%)
 - tinzaparin significantly decreased the risk of clinically relevant nonmajor bleeding (CRNMB)

CAT – Treatment (LMWH vs DOACs)

Hokusai VTE Cancer study 2018

- Open-label, randomized, noninferiority study
- 1046 cancer patients (dx within 2 yrs)

- LMWH x 5 days, followed by Edoxaban 60mg (or 30mg) daily x at least 6 months
- Dalteparin 200 iu/kg x 1 month, then 150 iu/kg x at least 5 months

Combined outcome of first recurrent VTE or major bleeding

- Edoxaban 12.8%
- Dalteparin 13.5%

Edoxaban pts experienced more bleeding events (6.9% vs 4.0%) than the dalteparin group

Credit Valley Hospital 2200 Eglinton Avenue West, Mississauga Mississauga Hospital 100 Queensway West, Mississauga

CAT – Treatment (LMWH vs DOACs) (2)

Select-D 2017

- Open-label, randomized, multicenter
- 406 cancer patients
- Dalteparin 200 iu/kg x 1 month, then 150 iu/kg x at least 5 months
- Rivaroxaban 15 mg bid x 21 days, then 20 mg daily for total x 6 months
- After 5 months of study medication, pts with index DVT underwent compression ultrasound of lower limbs.
- If U/S showed residual DVT or new PE, eligible to be randomly assigned to 6 months of rivaroxaban or placebo.

6 month VTE recurrence rate

- Rivaroxaban 4%
- Dalteparin 11%

Major bleeding

- Rivaroxaban 5.4%
- Dalteparin 3.0%

CRNMB

- Rivaroxaban 12.3%
- Dalteparin 3.0%

Young 2018

CAT – Treatment (LMWH vs DOACs)

- DOACs are at least as effective as LMWH for prevention of recurrent VTE, but increase the risk of major bleeding.
- More patients had major bleeding episodes on DOACs than on LMWH, most of these were upper GI bleeds, and most of these upper GI bleeds occurred in patients with GI cancers.
- Most clinically-relevant non-major bleeding occurred in rivaroxaban patients with GI or GU cancers.

Wang 2018

Rates of 6-month recurrent VTE, major bleeding and mortality in CLOT, CATCH, Hokusai VTE Cancer, Select-D

Study	CLOT		САТСН		Hokusai VTE Cancer		Select-D	
Arms	Warfarin	Dalteparin	Warfarin	Tinzaparin	Edoxaban	Dalteparin	Rivarox.	Dalteparin
Recurrent VTE	15.8%	8.0%	10.5%	6.9%	6.5%	8.8%	3.9%	8.9%
Major bleeding	3.6%	5.6%	2.4%	2.7%	5.6%	3.2%	5.4%	3.0%
Mortality	40.5%	38.7%	30.6%	33.4%	26.8%	24.2%	25.0%	30.0%

Wang 2018

Credit Valley Hospital 2200 Eglinton Avenue West, Mississauga Mississauga Hospital 100 Queensway West, Mississauga

TABLE IV Common drug-drug interactions with direct factor Xa inhibitors $^{\rm 24-27}$

Drug-drug interactions with DOACs

Drug class and name	Interaction effect						
	Edoxabana	Rivaroxaban ^b	Apixaban ^b				
Antimitotic agents							
Vinblastine	Ļ	4	1				
Anti-mycotic agents							
Azithromycin	Ť	t	Ť				
Clarithromycin	1	Ť	Ť				
Erythromycin	t	t	T.				
Itroconazole	Ť	t	î				
Ketoconazole	†	1	Ť				
Posaconazole	-	t	Ť				
Voriconazole		Ť	î				
Anthracyclines							
Doxorubicin	1	Ļ	1				
Hormonal agents							
Tamoxifen	Ť	Ť	î				
Immune-modulating agents							
Cyclosporine	Ť	t	T				
Dexamethasone	1	4	1				
Tacrolimus	t	t	t				
Protease inhibitors							
Indinavir	1	î	Ť				
Nelfinavir	Ť	t	Ť				
Ritonavir	î	1	T				
Saquinavir	t	Ť	Ť				
Tyrosine kinase inhibitors							
Imatinib		Ļ	1				
Lapatinib	1	1	Ť				
Nilotinib	Ť	t	Ť				
Sunitinib	Ť	t	Ť				

^a Substrate of P-glycoprotein.

^b Substrate of P-glycoprotein and CYP3A4 (cytochrome P450 3A4).

 \uparrow = increases plasma factor Xa through P-glycoprotein or CYP3A4 inhibition; \downarrow = decreases plasma factor Xa through P-glycoprotein or CYP3A4 induction; — = no effect on plasma factor Xa.

Carrier 2018

Credit Valley Hospital 2200 Eglinton Avenue West, Mississauga Mississauga Hospital 100 Queensway West, Mississauga

Canadian expert consensus Treatment Algorithm

- Burden of cancer (for example, recurrence or progression) and burden of VTE (consider LMWH for patients with severe symptoms—for example, illofemoral DVT, extensive PE, submassive PE, any thrombolyzed patient)
- Renal impairment (consider LMWH for patients with GFR per the Cockcroft–Gault formula of 30-50 mL/min)
 - Significant GI surgery or absorption disorders (consider LMWH for patients with impaired GI absorption)

Carrier 2018

Credit Valley Hospital 2200 Eglinton Avenue West, Mississauga

Mississauga Hospital 100 Queensway West, Mississauga

Unanswered questions re: CAT Treatment

- Optimal duration of treatment (? beyond 6 months)
- Best choice of extended treatment beyond 6 months
- Recurrent VTE while on anticoagulation
- Patients experiencing bleeding, thrombocytopenia
- Patients with brain tumors \rightarrow high thrombotic and bleeding risk
 - Metastatic brain tumor → AC not associated with increased risk of ICH
 - Glioma → 3.75-fold increased odds of ICH associated with enoxaparin

Wang 2018

Last thoughts

- These complications we have discussed today are commonly seen in the acute hospital setting in patients with known cancer diagnoses or new cancer patients that present with an oncologic emergency.
- Presentation may range from a slow and insidious onset to as rapidly as hours for some emergencies; a thorough work-up is imperative to obtain rapid diagnoses and initiate treatment.
- Symptoms may be non-specific \rightarrow have a high index of suspicion.
- Pharmacists have a vital role on the Oncology team in recognizing and managing these patients.

References

- Thomas SA and S Chung. Management of hypercalcemia of malignancy. *J Hem Onc Pharm* 2016; 6(1): 18-21.
- Stewart AF. Hypercalcemia associated with Cancer. N Engl J Med 2005: 352(4); 373-9
- Ralston SH, Gallacher SJ, Patel U, et al. Caner-associated hypercalcemia: Morbidity and mortality. Clinical experience in 126 treated patients. *Ann Intern Med* 1990; 112: 499-504.
- Goldner W. Cancer-related Hypercalcemia. J Onc Pract 2016; 12(5): 426-32.
- Rosner MH and AC Dalkin. Onco-nephrology: The pathophysiology and treatment of malignancy-associated hypercalcemia. *Clin J Am Soc Nephrol* 2012; 7: 1722-29.
- McCurdy MT and Shanholtz CB. Oncologic emergencies. Crit Care Med 2012; 40(7): 2212-22.
- Alberta Health Services. Clinical Practice Guideline Supp-007 v2: Oncologic Emergencies: A Guide for Family Physicians. September 2014. Accessed November 1, 2014, from http://www.albertahealthservices.ca/hp/if-hp-cancer-guide-oncologic-emergencies.pdf
- Major P, Lortholary A, et al. Zoledronic acid is superior to pamidronate in the treatment of hypercalcemia of malignancy: a pooled analysis of two randomized, controlled clinical trials. J Clin Oncol 2001; 19:558-67.
- Shane E and JR Berenson. Up to Date: Treatment of Hypercalcemia. 2019. Accessed Oct 15, 2019, from https://www.uptodate.com/contents/treatment-of-hypercalcemia#H21004936
- Cervantes A and Chirivella I. Oncological emergencies. Ann of Oncol 2004; 15(Supp 4): 299-306
- Higdon ML and Higdon JA. Treatment of Oncologic emergencies. *Am Fam Physician* 2006; 74(11): 1873-80.
- Coiffier B, Altman A, Pui CH, *et al*. Guidelines for the management of pediatric and adult tumor lysis syndrome: an evidence-based review. *J Clin Oncology* 2008; 26(16): 2767-78.
- Cheson B. Clin Adv Hem Onc 2009; 7(4): 263-71.
- Edeani A and A Shirali. Onco-Nephrology Curriculum Chapter 4: Tumor Lysis Syndrome. 2016: 1-8. Accessed July 29, 2019 from https://www.asn-online.org/education/distancelearning/curricula/onco/Chapter4.pdf

References (2)

- MD Anderson Cancer Center. Tumor Lysis Syndrome (TLS) in adult patients. 2018. Accessed from <u>https://www.mdanderson.org/content/dam/mdanderson/documents/for-physicians/algorithms/clinical-management/clin-management-tumor-lysis-web-algorithm.pdf</u>
- Santarpia L, Koch CA, Sarlis NJ. Hypercalcemia in cancer patients: pathobiology and management. *Horm Metab Res* 2010 Mar; 42(3): 153-64.
- Family Practice Notebook: <u>http://www.fpnotebook.com/legacy/Renal/HemeOnc/HyprclcmOfMlgncy.htm</u>. Accessed January 1, 2015.
- Wang TF, Li A, Garcia D. Managing thrombosis in cancer patients. *Res Pract Thromb Haemost* 2018; 2: 429-38.
- Blom JW, Doggen CJ, Osanto S, Rosendaal FR. Malignancies, prothrombotic mutations, and the risk of venous thrombosis. JAMA 2005; 293(6): 715-722.
- PA Kyrle, S Eichinger. Is Virchow's triad complete? *Blood* 2009: 114 (6); 1138-39.
- Noble SIR. The challenges of managing cancer related venous thromboembolism in the palliative care setting. *Postgrad Med J* 2007; 83: 671-674.
- Lee AY, Levine Mn, Baker RI et al. On behalf of the (CLOT) investigators. Low-molecular-weight heparin versus a coumarin for the prevention of recurrent venous thromboembolism in patients with cancer. *N Engl J Med* 2003; 349:146-53.
- Lee AY, Kamphuisen OW, Meyer G, et al. CATCH Investigators. Tinzaparin vs warfarin for treatment of acute venous thromboembolism in patients with active cancer: a randomized clinical trial. JAMA 2015; 314: 677-86.
- Raskob GE, van Es N, Verhamme P, et al. Hokusai VTE Cancer Investigators. Edoxaban for the treatment of cancer-associated venous thromboembolism. *N Engl J Med* 2018; 378: 615-24.
- Young A, Marshall A, Thirlwall J, et al. Comparison of an oral factor Xa inhibitor with low molecular weight heparin in patients with cancer with venous thromboembolism: results of a randomized trial (SELECT-D). *J Clin Oncol* 2018; 36:2017-23.
- Carrier M, Blais N, Crowther M, et al. Treatment algorithm in cancer-associated thrombosis: Canadian expert consensus. *Curr Oncol* 2018; 25(5): 329-37.

Questions?

Contact: <u>Sonia.cheung@thp.ca</u> 905-848-7580 ext. 4875